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bstract

In this study, the design of Pt-Co-Ce/Al2O3 catalyst for the low temperature CO oxidation in hydrogen streams was modeled using artificial
eural networks. The effects of five design parameters, namely Pt wt.%, Co wt.%, Ce wt.%, calcination temperature and calcination time, on CO
onversion were investigated by modeling the experimental data obtained in our laboratory for 30 catalysts. Although 30 points data set can be
onsidered as small for the neural network modeling, the results were quite satisfactory apparently due to the fact that the experimental data
enerated with response surface method were well balanced over the experimental region and it was very suitable for neural network modeling.
he success of neural network modeling was more apparent when the number of data points was increased to 120 by using the time on stream as

nother input parameter. It was then concluded that the neural network modeling can be very helpful to improve the experimental works in catalyst
esign and it may be combined with the statistical experimental design techniques so that the successful models can be constructed using relatively
mall number of data points.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The number of researches on clean energy sources and con-
ersion technologies increases everyday as a result of increasing
lobal concerns for the environmental protection. The fuel cells
eem to be one of the most promising energy conversion tech-
ologies of the future due to their high transformation efficiency
nd low emission and noise. However, the safe storage of
equired hydrogen is not technically feasible yet. Therefore on-
ite production of hydrogen from a conventional fuel such as
atural gas, gasoline or ethanol using a fuel processor seems to
e the most feasible choice for the near future for small size
pplications such as houses, offices and transportation vehicles
1].

On the other hand, the hydrogen stream from a fuel processor
ontains 0.5–1.0% CO which is harmful to the anode catalysts

f the PEM fuel cell (which is the most suitable fuel cell type
or the mobile and small-medium size stationary applications)
ven at the trace levels, and it must be eliminated [2]. One of the

∗ Corresponding author. Tel.: +90 212 359 7248; fax: +90 212 287 2460.
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o-Ce/Al2O3 catalyst

ost appropriate ways to clean up hydrogen stream from CO is
ow temperature selective oxidation of carbon monoxide using

catalyst. A noble metal, especially Pt based catalysts in the
bsence or presence of a promoter such as Co, Ce, Fe, Sn oxides
ave been extensively studied for this purpose [3–7].

Catalyst design is a tedious and a complex process involving
any steps, many variables and complex interactions among

hese variables making the experimental studies quite expen-
ive and time consuming. Therefore, effective computational
ethods such as artificial neural networks can be used to inter-

ret the findings of experimental studies, to feed the results to
he future experiments, and therefore to increase the efficiency
nd the effectiveness of the experimental work. Artificial neu-
al network modeling, which was inspired from the functioning
f biological nervous systems, is proved to be a powerful tech-
ique for complex and nonlinear problems with a strong ability
o learn and predict [8]. Several successful applications of arti-
cial neural networks on catalyst studies were reported in the

iterature [8–12].

In this work, artificial neural network models were developed

o analyze the effects of design parameters on CO oxidation over
Pt-Co-Ce/Al2O3” catalyst using the experimental data obtained
n our laboratory and reported in a previous communication [7].

mailto:yildirra@boun.edu.tr
dx.doi.org/10.1016/j.cej.2007.09.047
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ultiple regression models were also developed and compared
ith neural network models since the experimental data was
roduced using response surface method, which is generally
sed to perform multiple regression analysis.

. Computational work

.1. Experimental data used

The preferential CO oxidation over Pt-Co-Ce/Al2O3 in
ydrogen-rich stream had been experimentally studied in our
roup. The catalysts were prepared using incipient to wetness
mpregnation technique and tested in a microflow reaction sys-
em. The effects of Pt wt.%, Co wt.%, Ce wt.%, calcination
emperature and calcination time on the catalyst performance
as investigated using response surface method [13]. The exper-

mental CO conversions at various times on stream were given
n Table 1 for 30 different catalysts, whereas the details of the
xperimental work were discussed elsewhere [7].
.2. Computational details

The artificial neural networks used in this work were cre-
ted by writing computer codes in MATLAB 7.2. The logistic

i
a
n
l

able 1
O conversions for various catalyst design conditions. The reaction condit
eight) = 24,000 cm3/(g h), 1.0% CO, 1% O2, 60% H2, He as balance [7]

xp.# Design parameters

Pt (wt.%) Ce (wt.%) Co (wt.%) Calcination temperature (◦

1 1 5 2.5 500
2 1 2.5 0 500
3 1 2.5 2.5 500
4 1 2.5 2.5 500
5 1 2.5 2.5 500
6 0.6 1.25 1.25 550
7 0.6 1.25 1.25 450
8 0.6 3.75 3.75 550
9 1 2.5 5 500
0 1 2.5 2.5 500
1 1.4 3.75 3.75 450
2 1.4 1.25 3.75 550
3 1 2.5 2.5 600
4 1 2.5 2.5 500
5 1 0 2.5 500
6 1.4 1.25 3.75 450
7 1.4 3.75 1.25 450
8 0.6 1.25 3.75 450
9 1.8 2.5 2.5 500
0 0.6 3.75 1.25 450
1 1.4 1.25 1.25 450
2 0.2 2.5 2.5 500
3 0.6 3.75 1.25 550
4 1 2.5 2.5 400
5 0.6 3.75 3.75 450
6 1.4 1.25 1.25 550
7 1.4 3.75 3.75 550
8 1 2.5 2.5 500
9 1.4 3.75 1.25 550
0 0.6 1.25 3.75 550
eering Journal 140 (2008) 324–331 325

igmoid function, which is a good choice for many nonlin-
ar functions, was employed as the activation function, while
he delta rule was applied as the error correcting rule, and
he backpropagation algorithm was constructed as the learn-
ng algorithm to adapt the weights [14]. The experimental
ata were iterated randomly using randomly generated initial
eights in the interval of −0.1 to +0.1. Each network topol-
gy was trained at an average of three times giving similar
esults.

As it is known, a network having few number of neurons
ay fail to model the relation between the input and the output

arameters, while a network with too many number of neurons
ay over-fit the experimental data. Molga stated that the error

or the training data decreases with the increasing network size
hile the error for the test data increases. In order to find an
ptimum neural network structure, the number of input data
oints should be several times higher than the total number of
eights [15]. Hence, in this study, the model best simulating and
eneralizing the experimental results was searched by starting
rom small networks (small number of weights) and then enlarg-

ng the networks until the best model without over-fitting was
chieved. Enlarging a network was done by either adding more
eurons to the existing hidden layer or adding one more hidden
ayer to the network. Model validation was carried out on the

ions were kept constant at T = 90 ◦C, F/W (inlet gas flowrate/catalyst

CO conversion (%) at

C) Calcination time (h) 30 min 60 min 90 min 120 min

3 100.0 73.7 52.5 47.4
3 2.4 10.7 7.9 14.7
1 39.5 35.2 27.5 26.8
3 55.0 59.9 49.9 47.6
3 54.5 41.9 44.5 39.9
2 27.5 29.2 22.1 22.1
4 28.8 28.7 23.4 19.1
2 100.0 100.0 66.8 57.4
3 55.7 53.5 39.3 32.2
3 37.9 28.0 21.5 22.2
2 85.7 100.0 100.0 100.0
2 64.4 50.7 44.1 40.5
3 23.6 20.2 17.3 16.5
3 55.9 41.2 41.8 32.1
3 21.3 30.5 23.9 19.9
4 100.0 74.5 65.2 59.4
4 67.2 66.7 67.7 59.7
2 16.0 24.3 26.8 25.7
3 100.0 100.0 100.0 100.0
2 46.6 32.1 25.3 20.8
2 100.0 100.0 100.0 100.0
3 2.4 12.8 15.3 16.2
4 24.9 20.0 21.9 17.6
3 52.4 41.1 26.2 30.5
4 76.8 43.3 37.0 35.6
4 100.0 70.2 59.4 55.4
4 31.7 26.9 23.9 23.3
5 79.7 27.9 24.7 23.9
2 95.3 85.4 60.3 54.4
4 0.0 10.0 0.0 0.0
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eural network models by using the residual and the k-fold cross
alidation analyses [16].

The coefficient of determination (R2), the adjusted coefficient
f determination (R2

adj) and the root mean square error (RMSE)
ere used to compare the various neural network topologies
ith each other and also with multiple regression models [17].
he corresponding equations for R2, R2

adj and RMSE are given
elow.

2 = 1 −
∑n

1(pi − ti)2

∑n
1(ti − t̄)2 (1)

2
adj = 1 − (1 − R2)(n − 1)

(n − k − 1)
(2)

MSE =
√√√√1

n

n∑
1

(pi − ti)2 (3)

here pi is the predicted, ti is the target (experimental) value of
O conversion and t̄ is the mean of target values; n is the total
umber of experiments and k is the total number of independent
ariables (number of weights).

The test of input significance, which indicates the relative
mpacts of the design variables over the output variable (CO
onversion), was also performed using the method of “change
f root mean square error” [18].

. Results and discussion

.1. Modeling CO conversion

Neural network modeling of CO oxidation over Pt-Co-
e/Al2O3 was performed in two steps: First, the CO conversion
ata obtained at 60 min time on stream over 30 different catalysts
ere modeled using five design parameters (Pt wt.%, Co wt.%,
e wt.%, calcination temperature and calcination time) as input

arameters of the network. Second, the larger network mod-
ls were constructed by using the time on stream as another
nput parameter. This increased the number of data points
rom 30 to 120, since the experimental conversion values were
easured at four different times on stream (30, 60, 90 and

20 min).

a
t
t
t
t
c

Fig. 1. R2 (a) and RMSE (b) for different neural network topologies when all the
eering Journal 140 (2008) 324–331

.1.1. Modeling CO conversion using 60 min data
Several neural networks consisting five input parameters and

ne output parameter (CO conversion labeled as X1) with vary-
ng number of neurons in one or two hidden layers were trained
nd tested. In each neural network, the neurons named as bias
ad the constant value of 1.

R2 and RMSE values for various neural network topologies
re given in Fig. 1a and b, respectively. The full quadratic mul-
iple regression model (FMR) is also included in the figure for
omparison. R2 value increases while RMSE value decreases
xpectedly with increasing size of the network, which is defined
ased on the total number of weights rather than the number
f neurons. However, the change in both R2 and RMSE is not
ignificant for the topologies larger than the network having one
idden layer with three neurons. Since larger topologies also
ave the risk of over fitting; the cross validation analysis, which
ndicates the generalization ability of the network, was done
nly for the networks 5-3-1 and 5-2-2-1, both of which have
ufficiently higher R2 and lower RMSE values. The notation 5-
-1 represents a network having one input layer with five input
arameters, one hidden layer with three neurons and one output
euron. Similarly, the network 5-2-2-1 has one input layer with
ve input parameters, two hidden layers with two neurons in
ach and one output neuron.

Among the various cross validation techniques, k-fold cross
alidation technique was employed. The method is applied by
rst dividing the whole data into k subsets randomly, then train-

ng the network k times using the k-1 subsets as the training
ata and the remaining one subset as the test data in each run.
hus, all the data points are eventually used for both training
nd testing and the generalization accuracy of the network is
xamined in the entire experimental region [16]. After applying
his procedure to several different neural network structures, the
etwork having the minimum average RMSE for k test sets is
hosen as the one that has the highest generalization accuracy,
nd that best represents the experimental data points. Since the
otal number of experiments in our case was relatively small,

high k value of 15 was chosen first to keep the number of
raining data points high (28 experiments out of 30). However,

wo experiments for training can be considered as small, and
here is a risk that the test error calculated may not represent the
rue value of the validation error of the network. Thereby, 6-fold
ross validation was also performed to provide more test data in

data were used for training. FMR is the full quadratic multiple regression.
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Table 2
15-fold cross validation results for 5-2-2-1 and 5-3-1 networks

Subset number Experiments excluded RMSE

5-2-2-1 5-3-1

1 12, 28 9.70 3.81
2 10, 14 9.48 7.58
3 4, 19 23.92 21.09
4 11, 18 1.38 0.14
5 3, 6 41.06 45.82
6 1, 27 18.08 18.64
7 7, 17 18.37 28.49
8 15, 16 28.94 20.21
9 5, 13 11.79 2.03

10 20, 24 10.90 32.82
11 21, 25 2.08 35.50
12 26, 29 34.05 37.10
13 9, 23 17.90 23.60
14 2, 30 21.11 25.00
15 8, 22 42.00 42.74
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Fig. 2. Neural network architecture used for CO conversion (X1) at 60 min.

F
n

t
t

Average 19.38 22.97

ach subset (five experiments), though the number of training
ata slightly decreased (25 experiments).

Table 2 shows the comparison of the generalization ability
f the 5-2-2-1 and 5-3-1 networks for 15-fold cross validation.
MSE in the table represents the root mean square errors calcu-

ated for the two experiments (test data) that had been excluded
rom the entire data. The average RMSE value of 5-2-2-1 net-
ork is fairly lower than that of the 5-3-1 network. The 6-fold

ross validation results in Table 3 supports the same conclusion.
lthough, the average RMSE values are slightly higher for both
etworks in 6-fold validation, 5-2-2-1 network has still higher
eneralization capability. The structure of the 5-2-2-1 network
s shown in Fig. 2.

The prediction accuracy of the 5-2-2-1 network was also
airly satisfactory as seen from the experimental versus pre-
icted CO conversion plot in Fig. 3, when the entire data is used
or training. This is also evident from the R2, R2

adj and RMSE
hown in Table 4. Values of the same parameters of multiple
egression are also presented for comparison. The R2 value of
.947 of the neural network is well above the value of 0.887 of

he full quadratic model. The R2

adj is also much closer to the R2

or the neural network model indicating that over-fitting is less
ignificant than the full quadratic regression model [17].

able 3
-fold cross validation results for 5-2-2-1 and 5-3-1 networks

ubset number Experiments excluded RMSE

5-2-2-1 5-3-1

10, 12, 14, 19, 28 11.07 18.87
3, 4, 6, 11, 18 13.73 18.82
1, 7, 16, 17, 27 12.33 20.83
5, 13, 15, 20, 24 33.16 29.33
21, 23, 25, 26, 29 39.78 44.96
2, 8, 9, 22, 30 20.37 13.73

Average 21.74 24.42

t
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e
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f
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R

ig. 3. Comparison of experimental and predicted CO conversions for 5-2-2-1
eural network model at 60 min when all the data were used for training.

Although 30 experimental data points were not large enough
o construct a network with five input parameters, the results for
he 5-2-2-1 network were considerably successful probably due
o the fact that the data were generated using the response sur-
ace method. Apparently the well balanced distribution of the
ata points over the entire experimental region helped to create
network that represents the experimental results fairly well.

owever, when all the excluded experiments (test data) used in
5-fold cross validation were combined and a residual analysis
as performed, the errors of some experiments can be consid-

red as quite high (Fig. 4). This indicates that the success of the

able 4
easures of regression for CO conversion at 60 min when all the data were used

or training

5-2-2-1 Neural network results Multiple regression results

2 0.947 0.887
2
adj 0.809 0.590
MSE 6.599 9.454
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Fig. 4. Residual analysis of the test data for 5-2-2-1 neural network.

-2-2-1 network is still limited and it cannot be improved fur-
her using the current number of data points; due to the fact that
he smaller network structures have high training error while the
arger ones cause over-fitting. Therefore, the time on stream was
sed as another input parameter to increase the experimental data
oints.

.1.2. Modeling CO conversion by using the time on stream
s another input parameter

Although the time on stream is not a design parameter, it
an help us to see the effects of the design parameters better by
ncreasing the number of data points from 30 to 120 since the
xperimental conversion values were measured at four different
imes on stream (30, 60, 90 and 120 min). Obviously, a neural
etwork with six input parameters, trained by 120 points can
epresent the experimental data much better than a 5-parameter
etwork trained by only 30 data points.

On the other hand, the change of time on stream does not
hange the main character of the catalyst like the other parame-

ers. Hence, while doing cross validation analysis, all four data
oints obtained at four different times on stream for a spe-
ific catalyst should be excluded simultaneously. Otherwise, the
xclusion of one data point will be compensated by the others

t
n

q

ig. 5. R2 (a) and RMSE (b) for different neural network topologies when all the data
eering Journal 140 (2008) 324–331

nd the cross validation results would seem much better than the
rue power of the model.

Labeling the experimental data set was done as follows: The
rst 30 experiments in this section represented the 30 min time
n stream data in the order of appearance in Table 1. Likewise,
umbers 31–60 were assigned to 60 min data, numbers 61–90
o 90 min and 91–120 to 120 min.

The performance of several neural networks together with full
uadratic multiple regression is examined in Fig. 5. Similar to
he 60 min models discussed in Section 3.1, each neuron added
o any hidden layer contributes to the statistical success of the
etwork as indicated by higher R2 and lower RMSE.

15-fold cross validation method was again applied to 6-5-2-1
nd 6-5-3-1 neural networks since the R2 values for these models
re significantly higher than those of any smaller networks and
hey are as high as that of the 6-5-4-1 neural network. The train-
ngs were performed with 112 experiments and the network was
orced to predict those eight experiments that had been excluded
rom the main data. The exclusion of the data was done by tak-
ng out the CO conversion values over the same catalyst at all
ime on stream values. For example the data points 12, 42, 72
nd 102, all of which show the results of the 12th experiment at
imes 30, 60, 90 and 120 min were excluded at the same subset
s seen in Table 5.

As it is seen in Table 5, the 6-5-2-1 neural network has slightly
etter generalization ability than the 6-5-3-1 neural network in
redicting those points that were excluded from the main data.
lthough, RMSE values are very close for nearly all subsets,
-5-3-1 network failed to validate the subset number 8.

Since the number of connection lines is too many, the
chematic representation of the 6-5-2-1 network is shown in
simple form (Fig. 6). The additional neuron “sample” in the

nput layer represents the time on stream (minutes).
The high prediction accuracy of 6-5-2-1 network is seen from

he predicted versus experimental CO conversion plot in Fig. 7
hen all the data is used for training. Furthermore, the residual

nalysis using all the excluded experiments in 15-fold cross val-
dation test (Fig. 8) indicates that the generalization ability of

his network is also considerably better than that of the 5-2-2-1
etwork shown in Fig. 4.

Lastly, the superiority of the neural network against the full
uadratic multiple regression model is more apparent in this

were used for training. The time on stream was also used as an input parameter.
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Table 5
15-fold cross validation results for 6-5-2-1 and 6-5-3-1 networks (time on stream
was also used as an input parameter)

Subset number Experiments excluded RMSE

6-5-2-1 6-5-3-1

1 12, 42, 72, 102, 28, 58, 88, 118 4.90 4.85
2 10, 40, 70, 100, 14, 44, 74, 104 10.25 11.30
3 19, 49, 79, 109, 4, 34, 64, 94 8.40 8.63
4 11, 41, 71, 101, 18, 48, 78, 108 5.33 5.50
5 3, 33, 63, 93, 6, 36, 6, 96 8.69 3.06
6 1, 31, 61, 91, 27, 57, 87, 117 3.51 6.31
7 17, 47, 77, 107, 7, 37, 67, 97 7.60 3.55
8 16, 46, 76, 106, 15, 45, 75, 105 6.76 34.20
9 13, 43, 73, 103, 5, 35, 65, 95 3.35 6.41

10 24, 54, 84, 114, 20, 50, 80, 110 7.63 4.24
11 21, 51, 81, 111, 25, 55, 85, 115 3.28 2.11
12 29, 59, 89, 119, 26, 56, 86, 116 6.69 5.51
13 23, 53, 83, 113, 9, 39, 69, 99 9.87 7.80
14 2, 32, 62, 92, 30, 60, 90, 120 5.55 6.30
15 8, 38, 68, 98, 22, 52, 82, 112 3.87 2.96

Average 6.38 7.51

F
o

c
i
p
i

T
M
u

R
R

R

F
n

3

m
n
v
t
b
c
w
o
b
d
2
l
c
w

3

relative importance of the design parameters on CO conversion
for the 6-5-2-1 model using “the change of root mean square
error” test [18]. The procedure for this test is to leave out each
ig. 6. Neural network architecture used for CO conversion (X1) when the time
n stream was also used as an input parameter.

ase (Table 6). Although, multiple regression model was also
mproved with the addition of the time on stream as an input

arameter (for example R2

adj increased from 0.590 to 0.773), the
mprovement in neural network model is much more impressive.

able 6
easures of regression for CO conversion when the time on stream was also

sed as input parameter and all the data were used for training

6-5-2-1 Neural network results Multiple regression results

2 0.978 0.825
2
adj 0.961 0.773
MSE 4.884 12.073
ig. 7. Comparison of experimental and predicted CO conversions for 6-5-2-1
eural network model, when all the data were used for training.

.2. Optimizing the catalyst design parameters

Normally, the catalyst preparation conditions, which maxi-
ize the CO conversion, should be found by optimizing neural

etwork using an appropriate technique. However, the CO con-
ersion in some experiments reached to 100% limits making
his step unnecessary. Although, the reaction temperature could
e decreased and/or F/W could be increased to lower the CO
onversions well below 100% (so that numerical optimization
ould be possible), this was avoided to prevent the condensation
f the water in the feed (due to low reaction temperature), and to
e able to see the effects of design parameters on conversion as
iscussed in the following section. Instead, the catalyst number
1 in Table 1 was assumed to be the optimum one due to its
owest metal content among the other catalysts resulting 100%
onversion, and used for the remaining part of the experimental
ork [7].

.3. Effects of design parameters

The input significance analysis was performed first to see the
Fig. 8. Residual analysis for the test data of 6-5-2-1 neural network.
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Table 7
Test of input significance using the change of RMSE method

Parameter excluded RMSE R2 %Difference in RMSE

Pt 19.111 0.565 291.289
Co 7.949 0.925 62.759
Ce 8.725 0.884 78.635
Calc. temp. 6.389 0.924 30.807
Calc. time 5.941 0.926 21.635
T
N

o
o
t

t
t
i
t
o
t
A

t
c
s
p

s
r
e
v
p
6
i
b
i
m

n
a

ime on stream 10.252 0.906 109.913
o exclusion 4.884 0.978

f the six input parameters one by one, then to check the level
f decline of the RMSE of the training data caused by each of
hese exclusions.

The RMSE obtained after the exclusion of Pt is much higher
han the values obtained excluding other parameters indicating
hat Pt wt.% is the most significant parameter (Table 7). This
s an expected result and a further evidence for the success of

he neural network modeling since Pt is the primary constituent
f the catalyst and any change in its concentration is expected
o have a significant change in the performance of the catalysts.
lthough Co and Ce weight percents seem to be more significant

e
t
d
t

Fig. 9. Effects of input variab
eering Journal 140 (2008) 324–331

han calcination temperature conditions, the results are not as
onclusive as that for Pt. The significance of time on stream
hould not be compared with the others since it is not a design
arameter.

The effects of the five design parameters and the time on
tream on CO conversion are given in Fig. 9. The solid lines
epresent the model prediction for the effect of each param-
ter while keeping the other design parameters at their mean
alues (Pt: 1 wt.%, Co and Ce: 2.5 wt.% each, calcination tem-
erature: 500 ◦C, calcination time: 3 h) and the time on stream at
0 min. The available experimental data points are also presented
n the same figure as circular symbols. The good agreement
etween the model prediction and the experimental data points
s a further evidence for the success of the neural network

odeling.
The CO conversion increases with increasing Pt wt.% sig-

ificantly as expected (Fig. 9a). The effects of Co and Ce are
lso positive as seen from Fig. 9b and c, though they are not as

ffective as Pt. These are also expected results considering that
hese two metals were used to promote Pt [7]. Some interme-
iate levels of the calcination temperature and the calcination
ime, however, seem to be more suitable (Fig. 9d and e) for

les on CO conversion.
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igher CO conversions. Finally the decrease of CO conversion
ith increasing time on stream in Fig. 9f may be attributed

o the catalyst deactivation. Although the best catalysts (for
xample experiment 11, 19 and 21) keeps their activity up to
20 min, the most of the catalysts in Table 1 do lose their activ-
ty with increasing time on stream, resulting a decrease in CO
onversion.

. Conclusions

This paper examines the use of artificial neural network
odels for the design of Pt-Co-Ce/Al2O3 catalyst for the low

emperature selective CO oxidation. The conclusions drawn can
e summarized as follows:

Among many neural networks topologies, the neural network
model that best represented the 60 min CO conversion data
was the 5-2-2-1 model. However, the model had some limi-
tations in predicting the results of the data points that it had
never encountered before.
When the time on stream was treated as another input param-
eter, the data points increased from 30 to 120, giving way to
enlarge the network without risk of over-fitting. The gener-
alization power of the neural network (6-5-2-1) constructed
this way increased dramatically.
The most significant input parameter was found to be Pt wt.%
as expected. The model predictions for the effects of input
parameters on CO conversion were also in a good agreement
with the experimental results as an evidence for the success
of the neural network model.
Although the number of data points was small, the neural
network modeling has considerable success apparently due to
the fact that the data is generated using statistically designed
experiments.

To conclude; the neural network modeling can be very help-
ul to improve the experimental works in catalyst design and
t may be combined with the statistical experimental design
echniques so that highly successful models can be established
sing relatively small number of data points. The model best
epresenting the data can be used to optimize the catalyst if
he data points are suitable, to study the effects of the design
arameters, and to predict the possible performances of the

ew catalysts without doing any new experiments. However,
t should be noted again that the time on stream is not a
esign parameter, and the results should be treated accord-
ngly.
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