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Abstract

In this study, the design of Pt-Co-Ce/Al,O; catalyst for the low temperature CO oxidation in hydrogen streams was modeled using artificial
neural networks. The effects of five design parameters, namely Pt wt.%, Co wt.%, Ce wt.%, calcination temperature and calcination time, on CO
conversion were investigated by modeling the experimental data obtained in our laboratory for 30 catalysts. Although 30 points data set can be
considered as small for the neural network modeling, the results were quite satisfactory apparently due to the fact that the experimental data
generated with response surface method were well balanced over the experimental region and it was very suitable for neural network modeling.
The success of neural network modeling was more apparent when the number of data points was increased to 120 by using the time on stream as
another input parameter. It was then concluded that the neural network modeling can be very helpful to improve the experimental works in catalyst
design and it may be combined with the statistical experimental design techniques so that the successful models can be constructed using relatively

small number of data points.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The number of researches on clean energy sources and con-
version technologies increases everyday as a result of increasing
global concerns for the environmental protection. The fuel cells
seem to be one of the most promising energy conversion tech-
nologies of the future due to their high transformation efficiency
and low emission and noise. However, the safe storage of
required hydrogen is not technically feasible yet. Therefore on-
site production of hydrogen from a conventional fuel such as
natural gas, gasoline or ethanol using a fuel processor seems to
be the most feasible choice for the near future for small size
applications such as houses, offices and transportation vehicles
[1].

On the other hand, the hydrogen stream from a fuel processor
contains 0.5-1.0% CO which is harmful to the anode catalysts
of the PEM fuel cell (which is the most suitable fuel cell type
for the mobile and small-medium size stationary applications)
even at the trace levels, and it must be eliminated [2]. One of the
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most appropriate ways to clean up hydrogen stream from CO is
low temperature selective oxidation of carbon monoxide using
a catalyst. A noble metal, especially Pt based catalysts in the
absence or presence of a promoter such as Co, Ce, Fe, Sn oxides
have been extensively studied for this purpose [3-7].

Catalyst design is a tedious and a complex process involving
many steps, many variables and complex interactions among
these variables making the experimental studies quite expen-
sive and time consuming. Therefore, effective computational
methods such as artificial neural networks can be used to inter-
pret the findings of experimental studies, to feed the results to
the future experiments, and therefore to increase the efficiency
and the effectiveness of the experimental work. Artificial neu-
ral network modeling, which was inspired from the functioning
of biological nervous systems, is proved to be a powerful tech-
nique for complex and nonlinear problems with a strong ability
to learn and predict [8]. Several successful applications of arti-
ficial neural networks on catalyst studies were reported in the
literature [8—12].

In this work, artificial neural network models were developed
to analyze the effects of design parameters on CO oxidation over
“Pt-Co-Ce/Al,03” catalyst using the experimental data obtained
in our laboratory and reported in a previous communication [7].
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Multiple regression models were also developed and compared
with neural network models since the experimental data was
produced using response surface method, which is generally
used to perform multiple regression analysis.

2. Computational work
2.1. Experimental data used

The preferential CO oxidation over Pt-Co-Ce/Al,O3 in
hydrogen-rich stream had been experimentally studied in our
group. The catalysts were prepared using incipient to wetness
impregnation technique and tested in a microflow reaction sys-
tem. The effects of Ptwt.%, Cowt.%, Cewt.%, calcination
temperature and calcination time on the catalyst performance
was investigated using response surface method [13]. The exper-
imental CO conversions at various times on stream were given
in Table 1 for 30 different catalysts, whereas the details of the
experimental work were discussed elsewhere [7].

2.2. Computational details

The artificial neural networks used in this work were cre-
ated by writing computer codes in MATLAB 7.2. The logistic

Table 1

sigmoid function, which is a good choice for many nonlin-
ear functions, was employed as the activation function, while
the delta rule was applied as the error correcting rule, and
the backpropagation algorithm was constructed as the learn-
ing algorithm to adapt the weights [14]. The experimental
data were iterated randomly using randomly generated initial
weights in the interval of —0.1 to +0.1. Each network topol-
ogy was trained at an average of three times giving similar
results.

As it is known, a network having few number of neurons
may fail to model the relation between the input and the output
parameters, while a network with too many number of neurons
may over-fit the experimental data. Molga stated that the error
for the training data decreases with the increasing network size
while the error for the test data increases. In order to find an
optimum neural network structure, the number of input data
points should be several times higher than the total number of
weights [15]. Hence, in this study, the model best simulating and
generalizing the experimental results was searched by starting
from small networks (small number of weights) and then enlarg-
ing the networks until the best model without over-fitting was
achieved. Enlarging a network was done by either adding more
neurons to the existing hidden layer or adding one more hidden
layer to the network. Model validation was carried out on the

CO conversions for various catalyst design conditions. The reaction conditions were kept constant at 7=90°C, F/W (inlet gas flowrate/catalyst

weight) =24,000 cm3/(g h), 1.0% CO, 1% O,, 60% H,, He as balance [7]

Exp.# Design parameters CO conversion (%) at
Pt (wt.%) Ce (Wt.%) Co (wt.%) Calcination temperature (°C) Calcination time (h) 30 min 60 min 90 min 120 min
1 1 5 2.5 500 3 100.0 73.7 52.5 47.4
2 1 2.5 0 500 3 24 10.7 7.9 14.7
3 1 2.5 2.5 500 1 39.5 352 27.5 26.8
4 1 2.5 2.5 500 3 55.0 59.9 49.9 47.6
5 1 2.5 2.5 500 3 54.5 41.9 44.5 39.9
6 0.6 1.25 1.25 550 2 27.5 29.2 22.1 22.1
7 0.6 1.25 1.25 450 4 28.8 28.7 23.4 19.1
8 0.6 3.75 3.75 550 2 100.0 100.0 66.8 57.4
9 1 2.5 5 500 3 55.7 53.5 39.3 322
10 1 2.5 2.5 500 3 37.9 28.0 21.5 22.2
11 14 3.75 3.75 450 2 85.7 100.0 100.0 100.0
12 1.4 1.25 3.75 550 2 64.4 50.7 44.1 40.5
13 1 2.5 2.5 600 3 23.6 20.2 17.3 16.5
14 1 2.5 2.5 500 3 55.9 41.2 41.8 32.1
15 1 0 2.5 500 3 21.3 30.5 23.9 19.9
16 1.4 1.25 3.75 450 4 100.0 74.5 65.2 59.4
17 14 3.75 1.25 450 4 67.2 66.7 67.7 59.7
18 0.6 1.25 3.75 450 2 16.0 24.3 26.8 25.7
19 1.8 2.5 2.5 500 3 100.0 100.0 100.0 100.0
20 0.6 3.75 1.25 450 2 46.6 32.1 25.3 20.8
21 14 1.25 1.25 450 2 100.0 100.0 100.0 100.0
22 0.2 2.5 2.5 500 3 2.4 12.8 15.3 16.2
23 0.6 3.75 1.25 550 4 24.9 20.0 21.9 17.6
24 1 2.5 2.5 400 3 52.4 41.1 26.2 30.5
25 0.6 3.75 3.75 450 4 76.8 433 37.0 35.6
26 1.4 1.25 1.25 550 4 100.0 70.2 59.4 55.4
27 14 3.75 3.75 550 4 31.7 26.9 23.9 23.3
28 1 2.5 2.5 500 5 79.7 27.9 24.7 23.9
29 14 3.75 1.25 550 2 95.3 854 60.3 54.4
30 0.6 1.25 3.75 550 4 0.0 10.0 0.0 0.0
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neural network models by using the residual and the k-fold cross
validation analyses [16].

The coefficient of determination (R2), the adjusted coefficient
of determination (Rgdj) and the root mean square error (RMSE)
were used to compare the various neural network topologies
with each other and also with multiple regression models [17].
The corresponding equations for R, Rﬁdj and RMSE are given
below.

n )2
Zl(ti_t)
> . (U=RHn-1
Ry =1 k=1 2
_ I e
RMSE = nzlj(p, 1) (3)

where p; is the predicted, #; is the target (experimental) value of
CO conversion and 7 is the mean of target values; n is the total
number of experiments and k is the total number of independent
variables (number of weights).

The test of input significance, which indicates the relative
impacts of the design variables over the output variable (CO
conversion), was also performed using the method of “change
of root mean square error” [18].

3. Results and discussion
3.1. Modeling CO conversion

Neural network modeling of CO oxidation over Pt-Co-
Ce/Al; O3 was performed in two steps: First, the CO conversion
data obtained at 60 min time on stream over 30 different catalysts
were modeled using five design parameters (Pt wt.%, Co wt.%,
Ce wt.%, calcination temperature and calcination time) as input
parameters of the network. Second, the larger network mod-
els were constructed by using the time on stream as another
input parameter. This increased the number of data points
from 30 to 120, since the experimental conversion values were
measured at four different times on stream (30, 60, 90 and
120 min).
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3.1.1. Modeling CO conversion using 60 min data

Several neural networks consisting five input parameters and
one output parameter (CO conversion labeled as X;) with vary-
ing number of neurons in one or two hidden layers were trained
and tested. In each neural network, the neurons named as bias
had the constant value of 1.

R? and RMSE values for various neural network topologies
are given in Fig. 1a and b, respectively. The full quadratic mul-
tiple regression model (FMR) is also included in the figure for
comparison. R? value increases while RMSE value decreases
expectedly with increasing size of the network, which is defined
based on the total number of weights rather than the number
of neurons. However, the change in both R? and RMSE is not
significant for the topologies larger than the network having one
hidden layer with three neurons. Since larger topologies also
have the risk of over fitting; the cross validation analysis, which
indicates the generalization ability of the network, was done
only for the networks 5-3-1 and 5-2-2-1, both of which have
sufficiently higher R? and lower RMSE values. The notation 5-
3-1 represents a network having one input layer with five input
parameters, one hidden layer with three neurons and one output
neuron. Similarly, the network 5-2-2-1 has one input layer with
five input parameters, two hidden layers with two neurons in
each and one output neuron.

Among the various cross validation techniques, k-fold cross
validation technique was employed. The method is applied by
first dividing the whole data into k subsets randomly, then train-
ing the network k times using the k-1 subsets as the training
data and the remaining one subset as the test data in each run.
Thus, all the data points are eventually used for both training
and testing and the generalization accuracy of the network is
examined in the entire experimental region [16]. After applying
this procedure to several different neural network structures, the
network having the minimum average RMSE for £ test sets is
chosen as the one that has the highest generalization accuracy,
and that best represents the experimental data points. Since the
total number of experiments in our case was relatively small,
a high k value of 15 was chosen first to keep the number of
training data points high (28 experiments out of 30). However,
two experiments for training can be considered as small, and
there is a risk that the test error calculated may not represent the
true value of the validation error of the network. Thereby, 6-fold
cross validation was also performed to provide more test data in
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Fig. 1. R? (a) and RMSE (b) for different neural network topologies when all the data were used for training. FMR is the full quadratic multiple regression.
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Table 2

15-fold cross validation results for 5-2-2-1 and 5-3-1 networks

Subset number Experiments excluded RMSE
5-2-2-1 5-3-1
1 12,28 9.70 3.81
2 10, 14 9.48 7.58
3 4,19 23.92 21.09
4 11,18 1.38 0.14
5 3,6 41.06 45.82
6 1,27 18.08 18.64
7 7,17 18.37 28.49
8 15,16 28.94 20.21
9 5,13 11.79 2.03
10 20, 24 10.90 32.82
11 21,25 2.08 35.50
12 26, 29 34.05 37.10
13 9,23 17.90 23.60
14 2,30 21.11 25.00
15 8,22 42.00 42.74
Average 19.38 22.97

each subset (five experiments), though the number of training
data slightly decreased (25 experiments).

Table 2 shows the comparison of the generalization ability
of the 5-2-2-1 and 5-3-1 networks for 15-fold cross validation.
RMSE in the table represents the root mean square errors calcu-
lated for the two experiments (test data) that had been excluded
from the entire data. The average RMSE value of 5-2-2-1 net-
work is fairly lower than that of the 5-3-1 network. The 6-fold
cross validation results in Table 3 supports the same conclusion.
Although, the average RMSE values are slightly higher for both
networks in 6-fold validation, 5-2-2-1 network has still higher
generalization capability. The structure of the 5-2-2-1 network
is shown in Fig. 2.

The prediction accuracy of the 5-2-2-1 network was also
fairly satisfactory as seen from the experimental versus pre-
dicted CO conversion plot in Fig. 3, when the entire data is used
for training. This is also evident from the R2, Ridj and RMSE
shown in Table 4. Values of the same parameters of multiple
regression are also presented for comparison. The R? value of
0.947 of the neural network is well above the value of 0.887 of
the full quadratic model. The dej is also much closer to the R?
for the neural network model indicating that over-fitting is less
significant than the full quadratic regression model [17].

Table 3
6-fold cross validation results for 5-2-2-1 and 5-3-1 networks
Subset number Experiments excluded RMSE
5-2-2-1 5-3-1

1 10, 12, 14, 19, 28 11.07 18.87
2 3,4,6,11, 18 13.73 18.82
3 1,7,16,17,27 12.33 20.83
4 5,13, 15, 20,24 33.16 29.33
5 21,23, 25, 26,29 39.78 44.96
6 2,8,9,22,30 20.37 13.73

Average 21.74 2442

Fig. 2. Neural network architecture used for CO conversion (X;) at 60 min.
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Fig. 3. Comparison of experimental and predicted CO conversions for 5-2-2-1
neural network model at 60 min when all the data were used for training.

Although 30 experimental data points were not large enough
to construct a network with five input parameters, the results for
the 5-2-2-1 network were considerably successful probably due
to the fact that the data were generated using the response sur-
face method. Apparently the well balanced distribution of the
data points over the entire experimental region helped to create
a network that represents the experimental results fairly well.
However, when all the excluded experiments (test data) used in
15-fold cross validation were combined and a residual analysis
was performed, the errors of some experiments can be consid-
ered as quite high (Fig. 4). This indicates that the success of the

Table 4
Measures of regression for CO conversion at 60 min when all the data were used
for training

5-2-2-1 Neural network results Multiple regression results

R 0.947 0.887
R 0.809 0.590
RMSE 6.599 9.454




328 M.E. Giinay, R. Yildirum / Chemical Engineering Journal 140 (2008) 324-331

71\
[ ]
35
°* °
g u——.—.—.—.—.—¢0—.—.—.—!—o—.|—.—.—.—.—l-.—. % . )
s
) ° 0" ®, 2 e B
o °
.35 [ ) * 5

=70

Experiment Number

Fig. 4. Residual analysis of the test data for 5-2-2-1 neural network.

5-2-2-1 network is still limited and it cannot be improved fur-
ther using the current number of data points; due to the fact that
the smaller network structures have high training error while the
larger ones cause over-fitting. Therefore, the time on stream was
used as another input parameter to increase the experimental data
points.

3.1.2. Modeling CO conversion by using the time on stream
as another input parameter

Although the time on stream is not a design parameter, it
can help us to see the effects of the design parameters better by
increasing the number of data points from 30 to 120 since the
experimental conversion values were measured at four different
times on stream (30, 60, 90 and 120 min). Obviously, a neural
network with six input parameters, trained by 120 points can
represent the experimental data much better than a 5-parameter
network trained by only 30 data points.

On the other hand, the change of time on stream does not
change the main character of the catalyst like the other parame-
ters. Hence, while doing cross validation analysis, all four data
points obtained at four different times on stream for a spe-
cific catalyst should be excluded simultaneously. Otherwise, the
exclusion of one data point will be compensated by the others
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and the cross validation results would seem much better than the
true power of the model.

Labeling the experimental data set was done as follows: The
first 30 experiments in this section represented the 30 min time
on stream data in the order of appearance in Table 1. Likewise,
numbers 31-60 were assigned to 60 min data, numbers 61-90
to 90 min and 91-120 to 120 min.

The performance of several neural networks together with full
quadratic multiple regression is examined in Fig. 5. Similar to
the 60 min models discussed in Section 3.1, each neuron added
to any hidden layer contributes to the statistical success of the
network as indicated by higher R and lower RMSE.

15-fold cross validation method was again applied to 6-5-2-1
and 6-5-3-1 neural networks since the R? values for these models
are significantly higher than those of any smaller networks and
they are as high as that of the 6-5-4-1 neural network. The train-
ings were performed with 112 experiments and the network was
forced to predict those eight experiments that had been excluded
from the main data. The exclusion of the data was done by tak-
ing out the CO conversion values over the same catalyst at all
time on stream values. For example the data points 12, 42, 72
and 102, all of which show the results of the 12th experiment at
times 30, 60, 90 and 120 min were excluded at the same subset
as seen in Table 5.

Asitis seenin Table 5, the 6-5-2-1 neural network has slightly
better generalization ability than the 6-5-3-1 neural network in
predicting those points that were excluded from the main data.
Although, RMSE values are very close for nearly all subsets,
6-5-3-1 network failed to validate the subset number 8.

Since the number of connection lines is too many, the
schematic representation of the 6-5-2-1 network is shown in
a simple form (Fig. 6). The additional neuron “sample” in the
input layer represents the time on stream (minutes).

The high prediction accuracy of 6-5-2-1 network is seen from
the predicted versus experimental CO conversion plot in Fig. 7
when all the data is used for training. Furthermore, the residual
analysis using all the excluded experiments in 15-fold cross val-
idation test (Fig. 8) indicates that the generalization ability of
this network is also considerably better than that of the 5-2-2-1
network shown in Fig. 4.

Lastly, the superiority of the neural network against the full
quadratic multiple regression model is more apparent in this
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Fig. 5. R? (a) and RMSE (b) for different neural network topologies when all the data were used for training. The time on stream was also used as an input parameter.
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Table 5
15-fold cross validation results for 6-5-2-1 and 6-5-3-1 networks (time on stream
was also used as an input parameter)

Subset number Experiments excluded RMSE
6-5-2-1 6-5-3-1

1 12, 42,72, 102, 28, 58, 88, 118 4.90 4.85
2 10, 40, 70, 100, 14, 44,74, 104 10.25 11.30
3 19, 49, 79, 109, 4, 34, 64, 94 8.40 8.63
4 11,41, 71, 101, 18, 48,78, 108 5.33 5.50
5 3,33,63,93, 6,36, 6,9 8.69 3.06
6 1,31,61,91,27,57,87, 117 3.51 6.31
7 17,47,717,107,7, 37, 67,97 7.60 3.55
8 16, 46, 76, 106, 15, 45,75, 105 6.76 34.20
9 13,43,73,103, 5, 35, 65, 95 3.35 6.41
10 24, 54, 84, 114, 20, 50, 80, 110 7.63 4.24
11 21,51, 81, 111, 25, 55, 85, 115 3.28 2.11
12 29, 59, 89, 119, 26, 56, 86, 116 6.69 5.51
13 23,53,83,113,9, 39, 69, 99 9.87 7.80
14 2,32, 62,92, 30, 60, 90, 120 5.55 6.30
15 8,38, 68,98,22,52,82,112 3.87 2.96
Average 6.38 7.51

Fig. 6. Neural network architecture used for CO conversion (X;) when the time
on stream was also used as an input parameter.

case (Table 6). Although, multiple regression model was also
improved with the addition of the time on stream as an input
parameter (for example Rﬁdj increased from 0.590 to 0.773), the
improvement in neural network model is much more impressive.

Table 6
Measures of regression for CO conversion when the time on stream was also
used as input parameter and all the data were used for training

6-5-2-1 Neural network results Multiple regression results

R 0.978 0.825
R 0.961 0.773
RMSE 4.884 12.073
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Fig. 7. Comparison of experimental and predicted CO conversions for 6-5-2-1
neural network model, when all the data were used for training.

3.2. Optimizing the catalyst design parameters

Normally, the catalyst preparation conditions, which maxi-
mize the CO conversion, should be found by optimizing neural
network using an appropriate technique. However, the CO con-
version in some experiments reached to 100% limits making
this step unnecessary. Although, the reaction temperature could
be decreased and/or F/W could be increased to lower the CO
conversions well below 100% (so that numerical optimization
would be possible), this was avoided to prevent the condensation
of the water in the feed (due to low reaction temperature), and to
be able to see the effects of design parameters on conversion as
discussed in the following section. Instead, the catalyst number
21 in Table 1 was assumed to be the optimum one due to its
lowest metal content among the other catalysts resulting 100%
conversion, and used for the remaining part of the experimental
work [7].

3.3. Effects of design parameters

The input significance analysis was performed first to see the
relative importance of the design parameters on CO conversion
for the 6-5-2-1 model using “the change of root mean square
error” test [18]. The procedure for this test is to leave out each

Error

Experiment Number

Fig. 8. Residual analysis for the test data of 6-5-2-1 neural network.
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Table 7
Test of input significance using the change of RMSE method

Parameter excluded RMSE R? %Difference in RMSE
Pt 19.111 0.565 291.289

Co 7.949 0.925 62.759

Ce 8.725 0.884 78.635

Calc. temp. 6.389 0.924 30.807

Calc. time 5.941 0.926 21.635

Time on stream 10.252 0.906 109.913

No exclusion 4.884 0.978

of the six input parameters one by one, then to check the level
of decline of the RMSE of the training data caused by each of
these exclusions.

The RMSE obtained after the exclusion of Pt is much higher
than the values obtained excluding other parameters indicating
that Pt wt.% is the most significant parameter (Table 7). This
is an expected result and a further evidence for the success of
the neural network modeling since Pt is the primary constituent
of the catalyst and any change in its concentration is expected
to have a significant change in the performance of the catalysts.
Although Co and Ce weight percents seem to be more significant
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than calcination temperature conditions, the results are not as
conclusive as that for Pt. The significance of time on stream
should not be compared with the others since it is not a design
parameter.

The effects of the five design parameters and the time on
stream on CO conversion are given in Fig. 9. The solid lines
represent the model prediction for the effect of each param-
eter while keeping the other design parameters at their mean
values (Pt: 1 wt.%, Co and Ce: 2.5 wt.% each, calcination tem-
perature: 500 °C, calcination time: 3 h) and the time on stream at
60 min. The available experimental data points are also presented
in the same figure as circular symbols. The good agreement
between the model prediction and the experimental data points
is a further evidence for the success of the neural network
modeling.

The CO conversion increases with increasing Pt wt.% sig-
nificantly as expected (Fig. 9a). The effects of Co and Ce are
also positive as seen from Fig. 9b and c, though they are not as
effective as Pt. These are also expected results considering that
these two metals were used to promote Pt [7]. Some interme-
diate levels of the calcination temperature and the calcination
time, however, seem to be more suitable (Fig. 9d and e) for
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Fig. 9. Effects of input variables on CO conversion.
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higher CO conversions. Finally the decrease of CO conversion
with increasing time on stream in Fig. 9f may be attributed
to the catalyst deactivation. Although the best catalysts (for
example experiment 11, 19 and 21) keeps their activity up to
120 min, the most of the catalysts in Table 1 do lose their activ-
ity with increasing time on stream, resulting a decrease in CO
conversion.

4. Conclusions

This paper examines the use of artificial neural network
models for the design of Pt-Co-Ce/Al,O3 catalyst for the low
temperature selective CO oxidation. The conclusions drawn can
be summarized as follows:

e Among many neural networks topologies, the neural network
model that best represented the 60 min CO conversion data
was the 5-2-2-1 model. However, the model had some limi-
tations in predicting the results of the data points that it had
never encountered before.

e When the time on stream was treated as another input param-
eter, the data points increased from 30 to 120, giving way to
enlarge the network without risk of over-fitting. The gener-
alization power of the neural network (6-5-2-1) constructed
this way increased dramatically.

e The most significant input parameter was found to be Pt wt.%
as expected. The model predictions for the effects of input
parameters on CO conversion were also in a good agreement
with the experimental results as an evidence for the success
of the neural network model.

e Although the number of data points was small, the neural
network modeling has considerable success apparently due to
the fact that the data is generated using statistically designed
experiments.

To conclude; the neural network modeling can be very help-
ful to improve the experimental works in catalyst design and
it may be combined with the statistical experimental design
techniques so that highly successful models can be established
using relatively small number of data points. The model best
representing the data can be used to optimize the catalyst if
the data points are suitable, to study the effects of the design
parameters, and to predict the possible performances of the
new catalysts without doing any new experiments. However,
it should be noted again that the time on stream is not a
design parameter, and the results should be treated accord-

ingly.
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